Motion Correction in fMRI by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction
نویسندگان
چکیده
Head motion is the major source of error in measuring intensity changes related to given stimuli in fMRI. The effects of head motion are image shifts and field inhomogeneity variations which cause local changes in geometric distortions. The previously developed motion correction method, mapping slice-to-volume (MSV), retrospectively remaps slices that are shifted by head motion to their spatially correct locations in an anatomical reference. Images exhibiting spatially varying geometric distortions require non-linear mapping solutions. An accurate field map can be used for the correction of such spatial distortions. However, field-map changes with head motion and, in practice, only one field-map is available typically. This work evaluates the improved motion correction capability of MSV with concurrent iterative fieldcorrected reconstruction using only an initial field-map. The results from simulated motion data show effective convergence and accuracy in image registration for the correction of image artifacts complicated by the motion induced field effects.
منابع مشابه
Concurrent Geometric Distortion Correction in Mapping Slice-to-volume (MSV) Motion Correction of fMRI Time Series
D. Yeo, J. A. Fessler, B. Kim Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States, Radiology, University of Michigan Medical School, Ann Arbor, MI, United States Introduction: The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data, from which brain activation maps are computed, is se...
متن کاملMotion correction in fMRI via registration of individual slices into an anatomical volume.
An automated retrospective image registration based on mutual information is adapted to a multislice functional magnetic resonance imaging (fMRI) acquisition protocol to provide accurate motion correction. Motion correction is performed by mapping each slice to an anatomic volume data set acquired in the same fMRI session to accommodate inter-slice head motion. Accuracy of the registration para...
متن کاملConcurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.
The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventio...
متن کاملGeometric distortion correction in echo volumar imaging
Introduction: Echo volumar imaging (EVI) is a 3D extension of echo-planar imaging (EPI) that allows data from an entire volume to be acquired following a single excitation. However, only a few studies to date have applied EVI to functional MRI (fMRI) due to its high sensitivity to field-inhomogeneity induced distortions. In this study, we extend two EPI distortion correction techniques to EVI: ...
متن کاملIntegration of motion correction and physiological noise regression in fMRI
Physiological fluctuations resulting from the heart beat and respiration are a dominant source of noise in fMRI, particularly at high field strengths. Commonly used physiological noise correction techniques, such as RETROspective Image CORrection (RETROICOR), rely critically on the timing of the image acquisition relative to the heart beat, but do not account for the effects of subject motion. ...
متن کامل